
Drowsy Driver Alert System

Drowsiness detection is a safety technology that can prevent accidents that

are caused by drivers who fell asleep while driving.

The objective of this intermediate Python project is to build a drowsiness

detection system that will detect that a person’s eyes are closed for a few

seconds. This system will alert the driver when drowsiness is detected.

Driver Drowsiness Detection System

In this Python project, we will be using OpenCV for gathering the images

from webcam and feed them into a Deep Learningmodel which will classify

whether the person’s eyes are ‘Open’ or ‘Closed’. The approach we will be

using for this Python project is as follows :

Step 1 – Take image as input from a camera.

Step 2 – Detect the face in the image and create a Region of Interest (ROI).

Step 3 – Detect the eyes from ROI and feed it to the classifier.

Step 4 – Classifier will categorize whether eyes are open or closed.

Step 5 – Calculate score to check whether the person is drowsy.

Driver Drowsiness Detection Dataset
The dataset used for this model is created by us. To create the dataset, we

wrote a script that captures eyes from a camera and stores in our local disk.

We separated them into their respective labels ‘Open’ or ‘Closed’. The data

was manually cleaned by removing the unwanted images which were not

necessary for building the model. The data comprises around 7000 images

of people’s eyes under different lighting conditions. After training the

model on our dataset, we have attached the final weights and model

architecture file “models/cnnCat2.h5”.

Now, you can use this model to classify if a person’s eye is open or closed.

Alternatively, if you want to build and train your own model, you can

download the dataset: Driver Drowsiness Dataset

The Model Architecture

https://data-flair.training/blogs/deep-learning-tutorial/
https://data-flair.training/blogs/download-driver-drowsiness-detection-project-data/

The model we used is built with Keras using Convolutional Neural

Networks (CNN). A convolutional neural network is a special type of deep

neural network which performs extremely well for image classification

purposes. A CNN basically consists of an input layer, an output layer and a

hidden layer which can have multiple layers. A convolution operation is

performed on these layers using a filter that performs 2D matrix

multiplication on the layer and filter.

The CNN model architecture consists of the following layers:

● Convolutional layer; 32 nodes, kernel size 3

● Convolutional layer; 32 nodes, kernel size 3

● Convolutional layer; 64 nodes, kernel size 3

● Fully connected layer; 128 nodes

The final layer is also a fully connected layer with 2 nodes. A Relu activation

function is used in all the layers except the output layer in which we used

Softmax.

Project Prerequisites
The requirement for this Python project is a webcam through which we will

capture images. You need to have Python (3.6 version recommended)

installed on your system, then using pip, you can install the necessary

packages.

1. OpenCV – pip install opencv-python (face and eye detection).

2. TensorFlow – pip install tensorflow (keras uses TensorFlow as

backend).

3. Keras – pip install keras (to build our classification model).

4. Pygame – pip install pygame (to play alarm sound).

Steps for Performing Driver Drowsiness
Detection
Download the driver drowsiness detection system project source code from

the zip and extract the files in your system: Driver Drowsiness Project

Code

The contents of the zip are:

https://drive.google.com/open?id=1zodAMJQFuqThN3sKQ9Bcb76gUSFIMPrG
https://drive.google.com/open?id=1zodAMJQFuqThN3sKQ9Bcb76gUSFIMPrG

● The “haar cascade files” folder consists of the xml files that are

needed to detect objects from the image. In our case, we are

detecting the face and eyes of the person.

● The models folder contains our model file “cnnCat2.h5” which

was trained on convolutional neural networks.

● We have an audio clip “alarm.wav” which is played when the

person is feeling drowsy.

● “Model.py” file contains the program through which we built our

classification model by training on our dataset. You could see the

implementation of convolutional neural network in this file.

● “Drowsiness detection.py” is the main file of our project. To start

the detection procedure, we have to run this file.

Let’s now understand how our algorithm works step by step.

Step 1 – Take Image as Input from a Camera

With a webcam, we will take images as input. So to access the webcam, we

made an infinite loop that will capture each frame. We use the method

provided by OpenCV, cv2.VideoCapture(0) to access the camera and set the

capture object (cap). cap.read() will read each frame and we store the image

in a frame variable.

Step 2 – Detect Face in the Image and Create a Region of Interest (ROI)

To detect the face in the image, we need to first convert the image into

grayscale as the OpenCV algorithm for object detection takes gray images in

the input. We don’t need color information to detect the objects. We will be

using haar cascade classifier to detect faces. This line is used to set our

classifier face = cv2.CascadeClassifier(‘ path to our haar cascade xml file’).

Then we perform the detection using faces = face.detectMultiScale(gray). It

returns an array of detections with x,y coordinates, and height, the width of

the boundary box of the object. Now we can iterate over the faces and draw

boundary boxes for each face.

for (x,y,w,h) in faces:

cv2.rectangle(frame, (x,y), (x+w, y+h), (100,100,100), 1)

Step 3 – Detect the eyes from ROI and feed it to the classifier

The same procedure to detect faces is used to detect eyes. First, we set the

cascade classifier for eyes in leye and

reye respectively then detect the eyes using left_eye = leye.detectMultiScale(gray).

Now we need to extract only the eyes data from the full image. This can be achieved

by extracting the boundary box of the eye and then we can pull out the eye image

from the frame with this code.

l_eye = frame[y : y+h, x : x+w]

l_eye only contains the image data of the eye. This will be fed into our CNN

classifier which will predict if eyes are open or closed. Similarly, we will be

extracting the right eye into r_eye.

Step 4 – Classifier will Categorize whether Eyes are Open or Closed

We are using CNN classifier for predicting the eye status. To feed our image

into the model, we need to perform certain operations because the model

needs the correct dimensions to start with. First, we convert the color image

into grayscale using r_eye = cv2.cvtColor(r_eye, cv2.COLOR_BGR2GRAY).

Then, we resize the image to 24*24 pixels as our model was trained on

https://en.wikipedia.org/wiki/Convolutional_neural_network

24*24 pixel images cv2.resize(r_eye, (24,24)). We normalize our data for

better convergence r_eye = r_eye/255 (All values will be between 0-1).

Expand the dimensions to feed into our classifier. We loaded our model

using model = load_model(‘models/cnnCat2.h5’) . Now we predict each eye

with our model

lpred = model.predict_classes(l_eye). If the value of lpred[0] = 1, it states

that eyes are open, if value of lpred[0] = 0 then, it states that eyes are closed.

Step 5 – Calculate Score to Check whether Person is Drowsy

The score is basically a value we will use to determine how long the person

has closed his eyes. So if both eyes are closed, we will keep on increasing

score and when eyes are open, we decrease the score. We are drawing the

result on the screen using cv2.putText() function which will display real

time status of the person.

cv2.putText(frame, “Open”, (10, height-20), font, 1, (255,255,255), 1,

cv2.LINE_AA)

A threshold is defined for example if score becomes greater than 15 that

means the person’s eyes are closed for a long period of time. This is when

we beep the alarm using sound.play()

The Source Code of our main file looks like this:

import cv2

import os

from keras.models import load_model

import numpy as np

from pygame import mixer

import time

mixer.init()

sound = mixer.Sound('alarm.wav')

face = cv2.CascadeClassifier('haar cascade

files\haarcascade_frontalface_alt.xml')

leye = cv2.CascadeClassifier('haar cascade

files\haarcascade_lefteye_2splits.xml')

reye = cv2.CascadeClassifier('haar cascade

files\haarcascade_righteye_2splits.xml')

lbl=['Close','Open']

model = load_model('models/cnncat2.h5')

path = os.getcwd()

cap = cv2.VideoCapture(0)

font = cv2.FONT_HERSHEY_COMPLEX_SMALL

count=0

score=0

thicc=2

rpred=[99]

lpred=[99]

while(True):

ret, frame = cap.read()

height,width = frame.shape[:2]

gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

faces =

face.detectMultiScale(gray,minNeighbors=5,scaleFactor=1.1,minSize=(25,25))

left_eye = leye.detectMultiScale(gray)

right_eye = reye.detectMultiScale(gray)

cv2.rectangle(frame, (0,height-50) , (200,height) , (0,0,0) ,

thickness=cv2.FILLED)

for (x,y,w,h) in faces:

cv2.rectangle(frame, (x,y) , (x+w,y+h) , (100,100,100) , 1)

for (x,y,w,h) in right_eye:

r_eye=frame[y:y+h,x:x+w]

count=count+1

r_eye = cv2.cvtColor(r_eye,cv2.COLOR_BGR2GRAY)

r_eye = cv2.resize(r_eye,(24,24))

r_eye= r_eye/255

r_eye= r_eye.reshape(24,24,-1)

r_eye = np.expand_dims(r_eye,axis=0)

rpred = model.predict_classes(r_eye)

if(rpred[0]==1):

lbl='Open'

if(rpred[0]==0):

lbl='Closed'

break

for (x,y,w,h) in left_eye:

l_eye=frame[y:y+h,x:x+w]

count=count+1

l_eye = cv2.cvtColor(l_eye,cv2.COLOR_BGR2GRAY)

l_eye = cv2.resize(l_eye,(24,24))

l_eye= l_eye/255

l_eye=l_eye.reshape(24,24,-1)

l_eye = np.expand_dims(l_eye,axis=0)

lpred = model.predict_classes(l_eye)

if(lpred[0]==1):

lbl='Open'

if(lpred[0]==0):

lbl='Closed'

break

if(rpred[0]==0 and lpred[0]==0):

score=score+1

cv2.putText(frame,"Closed",(10,height-20), font,

1,(255,255,255),1,cv2.LINE_AA)

if(rpred[0]==1 or lpred[0]==1):

else:

score=score-1

cv2.putText(frame,"Open",(10,height-20), font,

1,(255,255,255),1,cv2.LINE_AA)

if(score<0):

score=0

cv2.putText(frame,'Score:'+str(score),(100,height-20), font,

1,(255,255,255),1,cv2.LINE_AA)

if(score>15):

#person is feeling sleepy so we beep the alarm

cv2.imwrite(os.path.join(path,'image.jpg'),frame)

try:

sound.play()

except: # isplaying = False

pass

if(thicc<16):

thicc= thicc+2

else:

thicc=thicc-2

if(thicc<2):

thicc=2

cv2.rectangle(frame,(0,0),(width,height),(0,0,255),thicc)

cv2.imshow('frame',frame)

if cv2.waitKey(1) & 0xFF == ord('q'):

break

cap.release()

cv2.destroyAllWindows()

Driver Drowsiness Detection Execution
Let’s execute drive drowsiness detection system and see the working of our

ml project. To start the project, you need to open a command prompt, go to

the directory where our main file “drowsiness detection.py” exists. Run the

script with this command.

python “drowsiness detection.py”

It may take a few seconds to open the webcam and start detection.

Example Screenshot:

Output Screenshot:

Closed Eye Detection

Open Eyes Detection

Sleep Alert

Summary
In this Python project, we have built a drowsy driver alert system that you

can implement in numerous ways. We used OpenCV to detect faces and

eyes using a haar cascade classifier and then we used a CNN model to

predict the status.

	Drowsy Driver Alert System
	Driver Drowsiness Detection System
	Driver Drowsiness Detection Dataset
	The Model Architecture
	Project Prerequisites
	Steps for Performing Driver Drowsiness Detection
	Driver Drowsiness Detection Execution

	Summary

